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Abstract: Concussion is defined as a biomechanically induced brain injury char
by the absence of gross anatomic lesions. Early and late clinical symptoms, i
impairments of memory and attention, headache, and alteration of mental status
result of neuronal dysfunction mostly caused by functional rather than structur
malities. The mechanical insult initiates a complex cascade of metabolic events le
perturbation of delicate neuronal homeostatic balances. Starting from neurotoxic
getic metabolism disturbance caused by the initial mitochondrial dysfunction see
the main biochemical explanation for most postconcussive signs and symptoms.
more, concussed cells enter a peculiar state of vulnerability, and if a second conc
sustained while they are in this state, they may be irreversibly damaged by the occu
swelling. This condition of concussion-induced brain vulnerability is the basic pa
iology of the second impact syndrome. N-acetylaspartate, a brain-specific co
representative of neuronal metabolic wellness, is proving a valid surrogate mark
post-traumatic biochemical damage, and its utility in monitoring the recover
aforementioned “functional” disturbance as a concussion marker is emerging, bec
easily detectable through proton magnetic resonance spectroscopy.
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INTRODUCTION

Concussion is the most common form of traumatic brain injury (TBI) worldwide
European countries, approximately 235 people per 100,000 are admitted annua
hospital after TBI, 80% of which are classified as belonging in the mild TBI (mTBI)
[3,4]. This phenomenon mirrors U.S. figures, in which approximately 1.5-8 millio
experience a TBI each year and, among those requiring hospitalization, a proportion
from 75%-90% are classified as “mildly” injured or “concussed” [1]. Although the i
of mTBI is relatively high, death from this type of trauma appears to be very low (
100,000/year), and only 0.2% of all patients with mTBI who visit emergency dep
(EDs) will die as a direct result of this injury [4].

Supported by the absence of structural lesions on traditional neuroimaging, a ge
broadly accepted view is that mTBI is indeed a very frequent entity but is not a ver
injury, leading only to transient disturbances, and that no intervention other than
tion typically is required [5-10]. However, according to a recent report revealing
diagnosis of an intracranial hematoma in such patients was made with a median de
hours [11], the quality of the “observation” that mildly injured patients receive wh
hospital is of utmost concern. In the United States, it has been found that neu
observations were documented in only 50% of patients admitted with a mild he
[11], and in Europe, patients with mTBI historically have been observed on non
wards by nurses and doctors not experienced in neurological observation. The
whether to perform imaging tests, observe, or discharge a patient with mTBI is o
many challenges of the concussive injury, whose early and late symptoms and sequ
be under-reported by patients and underestimated by physicians [6-11].

The label “mild” in mTBI does not reflect the severity of the underlying metab
physiologic processes, if not even the potential clinical manifestations. The wor
implies the general absence of overt structural brain damage. However, long be

typically reported recovery interval of 1 week to 3 months, at least 15% of persons w
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history of mTBI continue to see their primary care p
because of persistent problems [12-16]. In addition
health care professionals frequently become involv
care of persons with mTBI, including family practi
cians, behavioral psychologists, clinical psychologi
ropsychologists, neurologists, psychiatrists, neuro-
mologists, neurosurgeons, physiatrists, nurses, occu
therapists, and physical therapists.

Awareness of the potential of a high level of disab
mTBI is increasing. The provision of comprehensive d
and treatment services could bring great benefits to pat
otherwise would spend prolonged periods off work o
dent on others. Yet considerable confusion and inco
still exists in defining and understanding the pathophy
this type of trauma [17,18]. The following review repre
authors’ effort to piece together the current concept
most recent findings about the complex basic physiolo
lying the injury processes of this particular type of brai
and to emphasize the nuances involved in conducting
in this area.

DEFINING CONCUSSION

Although concussion certainly is blended into the vast
mTBI, by definition, concussion should be considered
and distinct entity because not all cases of mTBI
“concussive”; thus the 2 terms refer to different const
should not be used interchangeably [19]. That being
authors understand the common synonymous acce
mTBI and concussion. During the past decade, concu
been considered by 3 international consensus confe
which it has been defined and redefined by a panel o
until finally and unanimously the following statem
reached: “Concussion is a complex pathophysiologica
affecting the brain, induced by traumatic biomechanic
[19-21].

Given this general and propaedeutical definition
common features were added by the consensus panel
explain the nature of this peculiar brain injury [19].
concussion typically results in the rapid onset of sh
impairment of neurologic function, which resolves s
ously. Postconcussive symptoms may be prolonged i
percentage of cases, but the acute clinical symptom
reflect a functional disturbance rather than a structur
which usually is confirmed by the absence of abnorm
standard neuroimaging studies. Finally, concussion m
not involve loss of consciousness.

Notwithstanding such a comprehensive, well-desig
multifunctional definition, a certain degree of confu
exists regarding the compelling pathomechanisms tha
gered by the mechanical insult and that unfold there
dominant theory that diffuse axonal injury (DAI) is
neuropathological process behind concussion is prov

weak or, at best, inconclusive, given the current literature a
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the fact that neuronal injury inherent to mTBI impro
few lasting clinical sequelae in the vast majority of
Clinically, concussion still can be considered as the mil
of the spectrum continuum that is DAI. A large body o
and experimental evidence suggests that such a d
course based on temporal neuronal dysfunction is an i
consequence of complex biochemical and neurochem
cade mechanisms that are directly and immediately trig
traumatic insult.

The distinction between DAI and concussion is no
theoretical, and from a biomechanical perspective,
acknowledged. According to Ommaya et al [22], rotatio
acceleration must exceed the threshold of 12,500 rad/s
a mild DAI, whereas for moderate and severe DAI, 15,5
and 18,000 rad/s2 are required, respectively. Althou
authors determined that a rotational acceleration of 90
is capable of generating DAI [23], it recently has been
that much smaller head acceleration values ranging fr
to 5500 rad/s2 are needed to provoke a concussion [2

THE MECHANICAL INSULT AND THE
“IGNITION” OF THE NEUROCHEMICAL
CASCADES

Concussive head injury causes the brain to experien
chanical “shake,” by virtue of the action of the accelera
deceleration forces transmitted to the head immediately
impact, initiating a complex cascade of subsequent neu
ical and neurometabolic events.

The sudden stretching of the neuronal and axon
branes initiates an indiscriminate flux of ions throu
ously regulated ion channels and transient physical m
defects [25,26]. This process is followed by a widesprea
of a multitude of neurotransmitters, particularly e
amino acids (EAAs) [27,28], resulting in further ch
neuronal ionic homeostasis. Among the EAAs, glutam
the pivotal role by binding to the kainite, N-methyl-d-a
and D-amino-3-hydroxy-5-methyl-4-isoxazolepropio
ionic channels. N-methyl-d-aspartate receptor activat
sponsible for a further depolarization, ultimately ca
influx of calcium ions into the cells.

The essential point of this post-traumatic ionic
derangement is mitochondrial calcium overloading
which is responsible for inducing changes of inn
brane permeability with consequent malfunctioning
pling of oxidative phosphorylation, and finally, o
swelling [32,33]. As suggested by experiments in w
mitochondrial capacity to catalyze the tetravalent r
of molecular oxygen through the electron transpo
appears compromised, dysfunctional mitochondria
the main intracellular source of reactive oxygen
(ROS) [34-36], inducing a phenomenon known as o
stress. The occurrence of an overproduction of ROS
nd the physiologic capacity of the cell to scavenge them progres-
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sively leads to a decrease of antioxidant cell defen
consequent irreversible modification of biologicall
tant macromolecules. ROS-mediated damage, mai
acterized by the onset of lipid peroxidation, is rev
measuring tissue malondialdehyde, a compound u
able during normal conditions [37].

As clearly demonstrated in bench studies, this eve
very rapidly, starting 1 minute after trauma and pers
24-48 hours after injury [37]. Once the lipid per
reaction chain is initiated, it spontaneously propag
causes significant ascorbate depletion, explained eith
direct oxidizing action of ROS on ascorbate or by its u
redox cycling of �-tocopherol (vitamin E), which r
the only membrane-bound lipid soluble compound c
breaking lipid peroxidation reaction chain [38].

Although no full explanation has been found, a
phenomenon occurring during the onset of oxidative
the significant depletion of the nicotinic coenzyme poo
a condition that jeopardizes all the oxidoreductive
including those related to the cell energy supply. Possib
anisms for this phenomenon are the hydroxyl radical
hydrolysis of the N-glycosidic bond of reduced nico
adenine dinucleotide (phosphate) and the activation o
dized form of the enzyme nicotinamide adenine din
glycohydrolase [42]. Both mechanisms cause the hyd
nicotinic coenzymes and give rise to the same end prod
is, adenosine diphosphate (ADP)-ribose(P) and nico
Experimental evidence showed that methylenetetrahy
reductase can be subject to direct ROS attack and su
irreversible degradation of a consistent amount of the
coenzymes [43,44].

To re-establish pretrauma ionic balance, the Na1/K
sine triphosphate (ATP)-dependent pumps must wor
maximal capacities, and a high level of glucose ox
urgently required to satisfy this sudden increased en
mand. Under normal aerobic conditions and correct m
drial functioning, most of glucose consumption is co
oxygen consumption, thus optimizing ATP generatio
ever, damaged by the calcium overloading and under
attacks from ROS, most of these oxidoreductive reac
impaired, and the mitochondria cannot maintain th
phosphorylating capacity. This scenario results in a
decrease of all metabolites representative of the cell ene
such as high-energy phosphates (eg, ATP and g
triphosphate). This phenomenon is mirrored by a pro
increase of their dephosphorylated products (ie, ADP
sine monophosphate, guanosine diphosphate, g
monophosphate, nucleosides, and oxypurines). Partic
teresting are the increases of xanthine (5�) and uric a
which strongly suggests the activation of xanthine o
phenomenon that perpetuates the vicious cycle of ROS
tion via the catalytic mechanism of this enzyme [45].

Thus it happens that during the time of maximu
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malfunctioning causes an imbalance between ATP co
tion and production, a condition that obligates ne
work overtime via the more rapid, but less efficient,
independent glycolysis. The uncoupling between ox
glucose consumption and the yet unfulfilled energy
ment explain the paradoxical temporary increase in
glucose consumption, notwithstanding a period o
metabolic depression. In fact, local cerebral metabo
for glucose are documented to increase by 46% abov
levels within the first 30 minutes after injury and
from 30 minutes to 4 hours [46-50].

The overall evidence from these studies demonstr
the traumatic insult is directly responsible for sud
chemical changes, beginning immediately after inj
leads to subsequent depression of brain energy met
Even if it is considered a “mild” form of TBI, conc
able to cause profound biochemical changes, with
difference being that the described modifications
reversible [51]. As recently reported, the metabolic
ment and the post-mTBI “energy crisis” are co
chiefly responsible for the compromised synaptic
and the subsequent cognitive deficits [52].

A SURROGATE MARKER OF
POSTCONCUSSIVE BRAIN DAMAGE:
N-ACETYLASPARTATE

When proton magnetic resonance spectroscopy (1H-M
applied to the human brain, it was evident that the mo
inent proton signal, detectable after having suppressed
ton signal of water, was that of a metabolite know
acetylaspartate (NAA). Subsequently, NAA became
reliable molecular marker for the imaging of several pa
in brain 1H-MRS studies. These findings captured the
of the general neurosciences, dramatically accelerating
of research into the neurochemistry and neurobiol
molecule indeed definable as “unique” [53].

Although the exact biochemical role of this co
remains to be fully established, brain NAA was f
concentrations hundreds-fold higher than in non
system tissues and therefore was considered a brain
metabolite and an in vivo marker of neuronal
[53,54]. A decrease in NAA has been observed
neurological diseases that cause neuronal and axona
eration, such as tumors, epilepsy, dementia, stroke,
multiple sclerosis, and many leukoencephalopathi
versely, the only known pathologic state characteri
dramatic increase in cerebral NAA is an autosomal-
genetic leukodystrophy (Canavan disease) caused
synthesis of a defective form of the enzyme respon
the NAA degradation (N-acetyl-asparto-acylase
More generally, any major central nervous system
involving either direct neuronal and/or axonal dam
rial ondary hypoxic-ischemic, or toxic insult will result in abnor-
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malities of NAA homeostasis. In the field of TBI, ho
very innovative hypothesis seemed more fascinatin
others, according to which NAA reduction was belie
proportional to the severity of trauma [55].

By measuring whole-brain levels of NAA via hig
mance liquid chromatography [56] in 3 different lev
perimental, closed, and diffuse TBI (mild, moderate
vere), it was clearly demonstrated that at 48 hours afte
reduction in NAA correlated to the severity of the insu
ing spontaneous recovery with lower levels of trauma
versible decrease in the others [57]. The findings a
consistent with long-term behavioral observation in
injured with the same model of mTBI, showing on
differences with sham-injured animals, with the ma
ences being present 1 day after injury and showing c
improvement over time [58]. All these bench data
supported the indication for a potential role of NAA i
fying neuronal damage and predicting neuropsycholo
come after TBI [59] and being of high clinical relevance
use of 1H-MRS allow to measure NAA noninvasivel
[59,60].

The finding of recovery in the “concussed” ani
plied that the process leading to the reversible NAA r
was attributable to transient biochemical changes
simply to cell death. Similar to the previously d
biochemical changes, the striking finding was agai
pidity of the onset of significant NAA reduction, ide
early as 2 hours after injury, with the lowest values
at 15 hours after impact (�46% compared with
values). Spontaneous recovery was observed to occu
48-96 hours, but that took place only in mildly inju
Beyond showing the profound TBI-induced modifi
NAA homeostasis, this finding clearly demonstra
different levels of “physical” injury correlated with
levels and kinetics of “biochemical” damage, whic
versible in mTBI and irreversible in severe TBI (sTB

Substantial evidence exists that NAA synthesis ta
exclusively in neuronal mitochondria, that it is strict
neuronal energy metabolism, and that the distribu
tern of NAA closely parallels the distribution of “re
activity.” For an overview of the data supporting a
getic role for NAA in neurons, see Moffet et al [53]

A close linear relationship has been demonstrated
the efficacy of ATP synthesis and the ability to synthe
[60,61]. NAA synthesis is indeed an energy-requirin
dependent on the availability and the energy of hyd
acetyl coenzyme A (CoA) used as the acetyl group don
acetylation reaction of aspartate catalyzed by aspartate-
transferase. It is fundamental to understand that wh
CoA is used for NAA synthesis, there is an indirect hig
cost to the cell. In fact, because acetyl CoA will not
citric acid cycle (Krebs’ cycle), a decrease will occ
production of reducing equivalents (3 reduced nico

adenine dinucleotide and 1 reduced flavin adenine dinuc
r, a
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be
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otide) as the fuel for the electron transport chain. It
clearly evidenced that in the general post-traumatic m
derangement, acetyl CoA homeostasis is affected by gra
injury, following a pattern very similar to those obs
both ATP and NAA [62]. Therefore in metabolic cond
low ATP availability, when all of the pathways and c
voted to energy supply are operating at their maxima
with the aim of replenishing ATP levels, acetyl CoA w
accessible for NAA synthesis. Only when the ATP defi
fully restored acetyl CoA will become available to be sh
the NAA “production” pathway. It also should be rec
high ATP concentrations are able to inhibit the activity
synthase, which is the enzyme of the Krebs’ cycle, usi
CoA to synthesize citric acid [63]. With this in mind, a
concentration can be seen as an indirect marker of p
matic metabolic energy impairment.

According to these concepts, it is evident that if N
recovering after an mTBI, the concussive biochem
rangement (involving more complex pathways tha
NAA homeostasis [64]) cannot be considered to be
Thus NAA embodies a biochemical surrogate m
monitor the overall cerebral metabolic status, and it
that under conditions of reduced NAA, although the
functional, they are still experiencing energetic imb

POSTCONCUSSIVE BRAIN VULNERABI

The basic pathophysiological paths explored thus far h
ified some aspects of this particular clinical entity, su
that even if concussion is considered a form of mTBI
not to be considered as “mild” as the name would sugg
the exception of the almost always punctual reversibi
the modifications induced, it probably is not prudent t
adjective “mild” when referring to a traumatic event
have such consequences to the fundamental metab
energy states of neuronal cells. However, while all
biochemical modifications are scientifically interest
might appear, at a first glance, of negligible clinical u
cause they are all spontaneously and fully reversible.

Despite this reversibility, a reasonable body of
clearly demonstrates that the “concussed” brain cells u
peculiar state of “vulnerability,” during which time if
tain a second, typically nonlethal insult in a close
proximity, they would suffer irreversible damage
[65,66]. In the preclinical setting, this period of time
well defined in duration thanks to high reproducibil
closed-head rat model of mTBI that has been used to
strate biochemically the concept of vulnerability [62,6
nally proposed by Hovda et al [65]. In other words, con
induced pathophysiologic conditions, mainly manif
energetic metabolic perturbations, make the brain mor
tible to severe and irreversible cellular injury by a secon
of modest entity, creating a disproportion between th
le- severity and the subsequent cerebral damage.
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Several studies in animals in which investigators
on mTBI-induced dysfunction have been publish
current data support the concept of transient bio
and physiologic alterations that may be exacerbate
peated mild injuries within specific time windows o
ability [62,64,67]. In a rat weight-drop experim
formed by applying a new and easily reproducible pr
simulate a “second impact” condition, it was clearly
strated that levels of NAA, ATP, and the ATP/A
decreased significantly when measured 2 days after
concussion (Figure 1). Maximal metabolic abno
were seen when the occurrence of 2 mild injur
separated by a 3-day interval; in fact, the metabol
malities in these animals were similar to those occur
sTBI. In a follow-up study, similar perturbations we
to persist as late as 7 days after double impact, in
prolonged metabolic effects from repeat mTBI in
model [62]. Similar data were reported by Laurer et
a histopathology study in which they described th
tant cumulative effects of 2 episodes of mTBI (24 hou
in mice, which led to pronounced cellular damage c
with animals that sustained only a single trauma. Th
concluded that although the brain was not morpho
damaged after a single concussive insult, its vulnera
second concussive impact was dangerously increas

According to Hovda et al [65] and Doberstein e
metabolic alterations can persist for days after con

Figure 1. Concentrations of N-acetylaspartate (N
y-axis) and adenosine triphosphate (ATP) (right y-ax
termined by high-performance liquid chromatograp
whole brains of rats subjected to repeat diffuse mild t
brain injuries (TBIs) (spaced by 3 or 5 days) or single d
(mild TBI or severe TBI). Control subjects were sham-o
animals, ie, animals receiving anesthesia and surgic
dures out of injury. Each histogram is the mean of 6 an
significant differences were demonstrated when rat
ing a single mild TBI and rats sustaining a repeat
spaced by 5 days were compared. Similarly, no di
were observed when rats sustaining a single severe TB
sustaining a repeat mild TBI spaced by 3 days were co
*P � .05 versus control subjects.
creating no morphological damage but representing
ed
nd
cal
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er-
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tio
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ing
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or-
rt)
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9],
on,

pathological basis of the brain’s vulnerability. All th
provide the experimental demonstration of the ex
metabolic nature of “brain vulnerability” after mTBI
a unique contribution to the complex biochemical
underlying the clinical scenario of a repeated co
trauma, sometimes leading to catastrophic brain inj

To explain the differences between the underlyi
bolic dysfunction occurring after a concussion an
occurring after an sTBI, it is again necessary to use be
and consider the degree of the NAA and ATP re
which is approximately 20% and 50%, respectiv
More importantly, the ADP concentration is only
increased after mTBI but is found to be substan
creased by 35% after sTBI [70]. Despite the signific
reduction by one fifth, if the insult is “mild,” the m
dria are not yet irreversibly damaged and still p
sufficient phosphorylating capacity (ie, a modest de
the ATP/ADP ratio, which is a very good index to eva
mitochondrial phosphorylating activity) to allow s
ous complete ATP restoration, which was fulfilled
proximately 5 days in the aforementioned experim
On the contrary, the 35% increase in ADP found af
severe levels of injury indicates a profoundly differe
tion with an altered capacity of mitochondria to sup
cell energy requirements in terms of ATP synthesis
found decrease in the ATP/ADP ratio).

If after a first mild injury a second concussion
cells in the condition of recovering from the initial an
perfectly reversible energetic failure, it will cause
mitochondrial malfunctioning, leading to the same
ible energetic failure observed in severe injury. Thus
that occur too close in temporal proximity can sim
effects of a single severe injury. The key biochemica
the vulnerable brain lies in the incomplete resolutio
initially reversible energetic crisis triggered by the fir

The foremost clinical implication of these experime
is that within days after injury, the metabolic effects
cussions can be dangerously additive. This informati
not be surprising; however, similar human data regard
metabolites currently are not available. The second cli
plication of this notion is again remarkable because
difficult to establish how long the aforementioned p
brain vulnerability will last and when the occurrence of
trauma would be uneventful.

THE SECOND IMPACT SYNDROME AN
HYPOTHESIS OF “THE PERFECT STORM

A handful of previously published cases have rep
patients (mostly involved in sports-related activiti
while still having symptoms from a previous hea
experienced a second injury that unexpectedly an
dictably led to sustained intracranial hypertension a
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ond impact syndrome (SIS), is the occurrence of cat
cerebral edema after mTBI/concussion [72-77].

Skepticism about this entity notwithstanding
major concern about SIS is that it is an exceedin
clinical condition when compared with the overall i
of concussion, even though an elevated risk for su
mTBI exists among persons who are still recoverin
previous one [79-81]. The topic is further complicat
fact that the resolution of clinical symptoms might
cide with the “closure” of the temporal window
metabolic imbalance “opened” by the first trauma
Thus the question of whether the brain had fully r
from the first concussive injury while experiencing
ond one remains unanswered.

Once again, laboratory data have provided clarifi
some of these complex matters. In a recently p
weight-drop experiment, rats were subjected to
mTBIs, with the second mTBI delivered after 1, 2, 3
days, and then all animals were killed 48 hours afte
impact. Notably, mitochondrial-related changes
sively worsened with the time between concussion
days apart, when the metabolic abnormalities were s
those occurring after a single sTBI [62]. In this m
with this experimental timeline, the third day afte
was the point when the cell’s energy-dependent
processes were at their maximal intensity. Howev
reproducibility of the model allowed to establish the
of the window of vulnerability in the rat, this ca
affirmed in the case of human beings in which the v
uncontrolled variables render each impact differ
another. This concept was clearly developed by G
Hovda [66], who showed that each physiologic p
modified by a concussion has its own time frame,
head injury can be very different from the next. T
they concluded that it is difficult to definitively state
duration of vulnerability to a second injury [66]. R
our studies in concussed athletes strongly corrobor
knowledge [82,83]. In fact, while it was clear that no
50 concussed athletes recovered NAA concentratio
30 days post-impact, it was also evident that the tim
normalization was not identical in each subject, thu
ing impossible to define the time of brain vulnerab
the same degree of certainty found in animals [62,64
other hand, it was also clearly demonstrated that no
concussed patients had clearance of post-concussiv
symptoms faster than NAA normalization, ie, distur
brain metabolism lasted much longer than gross clin
[82,83], when post-concussive symptoms are pers
weeks after concussion. In an as yet unpublished a
describe a group of 6 doubly concussed athletes in w
post-concussive syndrome persisted up to 2 mon
injury (Vagnozzi et al., 2011, submitted). Even in
stricted group of patients, recovery of NAA occurr

later (75 to 120 days), once again suggesting that rescue
hic
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brain metabolism does not correlate with self-report
ance of post-concussive symptoms. Therefore a sec
pact occurring at this stage had the most profoun
because of the minimal “metabolic buffering cap
counteract the known early changes reinitiated by
mTBI. With their biochemical homeostasis not yet
lished, the ionic imbalance will prevail and massive
swelling will take place [84,85].

The reason why SIS is, fortunately, an extrem
condition is probably because it represents a sort of
storm,” an extremely random and hardly predictab
tion generated by the odd combination of the sever
initial concussion, the time interval between the 2
and the metabolic state of the brain at the time of th
concussion.

The results of a recent pilot study performed in a
singly and doubly concussed athletes who were exam
1H-MRS for their NAA cerebral content at differ
points after concussive events demonstrated that th
ery of brain metabolism is not linearly related to time
this study, athletes who experienced a second co
between the 10th and the 13th day after the first in
not have SIS, nor did they demonstrate signs of sT
ever, they all had a significant delay in both sympt
lution and NAA normalization [82]. In other wo
effects of the second concussion were not fatal, but t
somehow not proportionate to the entity of the
sive insult. Most likely, the second concussion
when the brain cells were completing recovery of
metabolic functions, and thus it only produced a
cumulative effect with moderate worsening of the
pictures. Thus it is conceivable to infer that it is
interval between the 2 concussions that drives the
and metabolic evolution.

It is our belief that SIS should not be solely cons
an “all-or-none” phenomenon and should not be li
those instances that result in death from malignant
The concept of SIS should be extended to includ
other occurrences in which a disproportion betw
severity of the second injury and the concussive
features (ie, intensity and/or time of resolution) or
metabolic changes (ie, extent of NAA decrease and
in its normalization) is clearly observed. The degre
type of SIS will depend on which phase of the m
recovery the brain is in at the time of the second con

UNDERSTANDING THE DEGREE OF
MILDNESS OF AN mTBI: CHANGES IN
GENE EXPRESSION

With use of the same model of experimental repe
studies from our laboratories [62] demonstrated th
was an effect of the time interval between concus
of ASPA gene expression. A progressive increase in the messen-
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ger ribonucleic acid transcript of the ASPA gene
served, again with a maximum 4-fold increase in ani
sustained the 2 injuries 3 days apart [62]. Animals
past 5 days had values of messenger ribonucleic
ASPA comparable with those recorded in control
Based on these data, it appears that TBI-induced NA
tions may not be attributable simply to a decrease
NAA biosynthesis.

The aforementioned results allowed researcher
pothesize that TBI-induced NAA decrease occurs in
phases with 2 different mechanisms. Initially, inde
from the severity of injury, a change in mitochondria
ability [86] causes an increased velocity of NAA outfl
neurons to the extracellular space. Simultaneous
chondrial impairment causes a cell energy deficit w
sequent diminution in NAA synthesis. In the case o
ible brain damage, such as single mTBI or repeat
which the second impact occurs outside the brain’s
bility “window,” recovery of mitochondrial funct
allow restoration of ATP homeostasis and the su
normalization in the rate of NAA efflux and biosynt
NAA levels close to those of control subjects with no
in ASPA expression). In single sTBI or in repeat
which the second impact occurs within the brain vu
ity “window,” the profound energy crisis caused by t
mitochondrial malfunctioning induces a constant N
flow toward the oligodendrocytes, which, as an
mechanism, increases the expression of ASPA. This
enon, combined with the decreased rate of NAA bio
caused by persistent mitochondrial impairment, is u
responsible for the dramatic NAA depletion.

These results were immediately followed by a c
tive study on transcriptomics in which the author
the simultaneous expression of approximately 30
genes whose products are involved in a variety o
processes [87]. With the use of complementary de
nucleic acid microarray technology, it was reported
stretch injury to hippocampal slice cultures (as a sui
model to induce graded TBI), the expression of 9
was altered in mTBI compared with control patie
altered genes in mTBI-stretched cells clustered in
called “biological process” group, which was show
involved in the structural damage of cellular archite

Most of these genes are indeed involved in sign
ducer activity, regulation of transcription, and cell
nication. This finding indicated that even after a mil
injury, as compared with a closed, diffuse mTBI
activity involving transcription and signaling exc
initiated. In addition, it has been found that certa
involved in the apoptotic process, such as voltage-de
anion-selective channel protein 1 (ie, VDAC1), SH3
GRB2-like endophilin B1 (SH3GLB1), pleckstrin ho
like domain, family A, member 1 (PHDLA1), Rho-a

coiled-coil containing protein kinase 1 (ROCK1), and
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karyotic translation initiation factor 4 gamma, 2 (
predicted), were down-regulated. Furthermore, an
lation was seen in genes involved in the antia
process, such as chemokine (C-C motif) ligand 2
vascular endothelial growth factor A (VEGFA), ba
IAP repeat-containing 3 (BIRC3), TSC22 domain
member 3 (TSC22D3), BCL2/adenovirus E1B 19-kD
ing protein 3 (BNIP3), and nuclear receptor subf
group A, member 1 (NR4A1).

Most of these expression changes were only fou
mild stretch injury, indicating that these hippocam
cultures have activated protective and repair mec
The most interesting finding was that more genes w
ferentially expressed after mild brain injury than aft
injury, further supporting the notion that even aft
characterized by the absence of radiological and
abnormalities, a complex cellular response is initi
distinct neuronal dysfunction occurs. This finding
rates previous findings that these effects are “primar
lar effects not determined by local blood flow or
delivery or by any systemic factors [88].

The overall doubt that might be generated from
bination of these studies on gene expression with
chemical works previously cited is that, apparen
much rationale is left to justify the adjective “mil
dealing with a concussive injury. It is undeniable th
aforementioned changes are fully reversible, but it
kept in mind that this reversibility is true only if
“equally mild” TBI does not occur within the tempo
dow of metabolic brain vulnerability.

CLINICAL IMPLICATIONS

In the 18th century, Alexis Littre performed a famo
mortem examination providing evidence that concu
occur without obvious anatomic damage to the b
performed an autopsy on one particular patient w
been rendered unconscious and died soon after his h
wall. Littre detected no cerebral injury, a finding c
with the 16th-century Ambroise Pare’s notion, acco
which the symptoms of concussion “. . . reflected
tional disturbance rather than structural damage
contusion, hemorrhage or laceration of the brain” [

More than half a millennium since Pare’s first i
basic science data collected thus far have clarified o
of the many aspects of this particular clinical entity,
ing that short-term as well as long-term consequen
very well be overcome simply by understanding t
bolic conditions of the injured brain cells.

Data reported in this summary strongly suggest tha
ing NAA after an initial concussion and monitoring
normalization might represent a significant step fo
quantifying the objective nature of postconcussive m
eu- disturbances. Because of its high concentration within neurons
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(�10 mmol/L brain water), NAA levels are easily dem
by 1H-MRS. This technique is based on the ability to lo
MR signal into a specific volume of tissue, thus pr
real-time “image” of the brain neurochemistry. At th
time, 1H-MRS offers a unique opportunity to endeavo
logically” grade the “severity” of a concussion by quant
actual metabolic dysfunction, apart from signs and sy
because often clearance of clinical disturbances does
cide with full cerebral metabolic recovery.

The results of a multicenter clinical trial [83] invo
concussed athletes and 30 healthy volunteers recen
been published and reveal that despite different c
tions of magnetic field strengths (1.5 or 3.0 T) and
spectrum acquisition (single- or multi-voxel) amon
scanners currently in use in most neuroradiology
NAA determination represents a quick (15-minute
perform, noninvasive tool to accurately measure ch
cerebral biochemical damage that occur after a con
Patients exhibited the most significant alteration of
lite ratios at day 3 after injury and showed a gradual
initially in a slow fashion and, after day 15, more ra
30 days after the injury, all subjects exhibited
recovery, that is, having metabolite ratios similar

Figure 2. Metabolite ratios of N-acetylaspartate/
containing compounds (NAA/Cr) and choline-c
compounds/creatine-containing compounds (Ch
healthy control patients and concussed athletes. H
are the means of 30 healthy control patients and
cussed athletes. Standard deviations are represente
tical bars. Data were collected in 3 different neurorad
centers with the use of either the “single-voxel” mode
a 3-T apparatus, the “single-voxel” mode through
apparatus or the “multivoxel” mode through a 3-T ap
No differences were observed when data collected
neuroradiology centers were compared. At 3 days a
the NAA/Cr ratio decreased by 17.6% and gradua
ered to complete normalization at 30 days. The Cho
did not show any significant variation. *P � .01 with re
control patients. **P � .01 with respect to values deter
the previous time points.
detected in control subjects (Figure 2).
ted
the
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Interestingly, patients self-declared a clearance
symptoms between 3 and 15 days after concussion.
a snapshot of the degree of energetic impairmen
monitor the eventual recovery curve might represen
strategy to avoid a second mTBI soon afterward th
lead to a more severe injury.

Finally, the combination of metabolic regional
tained with longitudinal 1H-MRS studies, serial n
chological evaluation, and diffusion tensor imaging s
correlate metabolic alteration with possible white ma
damage can minimize the risk of recurrent injury tha
responsible for the cumulative impairments of cereb
tion and cognition, including early onset of memor
bances, early depression, and even dementia.

CONCLUSIONS

Sudden and profound biochemical changes occur aft
cussive trauma. These changes are activated by the m
insult itself and lead to ionic disturbance, EAA “neuro
initial mitochondrial dysfunction, ROS-mediated dam
ergy metabolism depression, alteration of gene expres
ultimately variation of NAA concentration, the “s
marker of the dysfunctional neurons. This complex pa
iology represents the modern explanation of the clinica
tation of concussion—a capricious combination of h
dizziness, insomnia, fatigue, lethargy, uneven gait, nau
iting, blurred vision, attention difficulty, concentrati
lems, memory problems, orientation problems, self-
problems, expression and speech or language problem
bility, depression, anxiety, sleep disturbance, proble
emotional control, loss of initiative, blunted affect, som
occupation, hyperactivity, disinhibition, or problems
employment, marriage, relationships, and home and
management.

More problematically, within days after a simple
the head, this intricate biochemical derangement c
in a dangerous state for the brain, generating a situ
metabolic vulnerability to the point that if anothe
“mild” injury were to occur, the 2 concussions wou
the biochemical equivalence of a severe brain trau
immediate clinical implication derived from this ev
that trials are warranted to investigate the applic
1H-MRS for measurement of NAA and to monitor
recovery of brain metabolic functions.
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